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Currentanticancer agents suffer from narrow therapeutic indexes and
suboptimal therapeutic combinations stemming from mixtures of drugs with
dissimilar physical properties. Nanomedicine platforms for drug delivery
could address these challenges, but it remains unclear whether synergistic
free-drug ratios translate to nanocarriers and whether nanocarriers with
multiple drugs outperform mixtures of single-drug nanocarriers at the

same dose. Here we report abottlebrush prodrug (BPD) platform to answer
these questions in the context of multiple myeloma therapy. We show that
bortezomib-based BPD monotherapy slows tumour progressionin vivo

and that mixtures of bortezomib, pomalidomide and dexamethasone BPDs
exhibitinvitro synergistic, additive or antagonistic patterns, respectively,
distinct from their corresponding free-drug counterparts. BPDs carrying
astatistical mixture of three drugs in a synergistic ratio outperformthe
free-drug combination at the same ratio as well as a mixture of single-drug
BPDsinthe same ratio. Our results address unanswered questions in the field
of nanomedicine, offering design principles for combination nanomedicines
and strategies for improving current front-line monotherapies and
combination therapies for multiple myeloma.

Controlling the tissue exposure:ofdrugs:remains the most persis-
tent challenge of modern cancer therapies and the holy grail of drug
delivery'™. By exploiting features such as size, shape, composition and
release kinetics, nanocarriers can enhance the therapeuticindexes (TIs)
of drugs by increasing their exposure in diseased sites and/or avoiding
major sites of toxicity"**. The development of nanomedicine combina-
tion therapies represents a frontier of modern cancer treatment®°.

Although recent pioneering advancements in cancer biology have
greatlyimproved the ability to identify and predict synthetic lethalities
of drug combinations, the clinical translation of such combinations
suffers from fundamental barriers’’. For instance, due to the distinct
physical properties of dissimilar drugs, combinations of those drugs
that are synergistic in vitro may not accumulate in target tissues/cells
invivo®°. Due to this disconnect, many clinical combination therapies
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areempirically derived based on the maximum tolerated dose (MTD)
of each component drug rather than rational synergies® ®. Combina-
tiontherapies present an excitingnanomedicine opportunity wherein
multiple drugs that are pharmacologically different may be delivered
to the same tissue/cell in precise ratios to empower their synergistic
mechanisms. For example, Vyxeos (CPX-351), a clinically successful
liposomal formulation of 5:1 cytarabine:daunorubicin, maintained a
synergisticdrugratio (from 5:1to 9:1) in the blood compartment over
24 h post-injection, whereas the free drugs exhibited a1,923:1 ratio
15min post-injection““:

Although strategies for incorporating mixtures of structurally
dissimilar drugs through encapsulation, chemical conjugationand/or
self-assembly have been extensively studied, nanocarriers that simul-
taneously achieve controlled drug ratios, multidrug release kinetics
and/or sequential release for two or more drugs remain rare® >,
Moreover, due to differences in cell uptake pathways, rates of cellular
internalization and/or drug release kinetics, multidrug nanocarriers
could exhibit synergistic ratios that are distinct from their free-drug
counterparts, necessitating the identification of optimal ratios in the
nanocarrier context. Given that most nanocarriers rely on supramo-
lecular interactions between the drugs, vehicle and/or surfactant(s),
which depend onthe physical properties of the drugs, exchanging one
drug for another may result in changes to the physical properties of
the final nanocarrier. Itis, thus, difficult to make multiple single-drug
nanocarriers and multidrug nanocarriers with varying drug ratios but
otherwise identical properties. Hence, in combination nanocarriers
employed to date, the synergistic drug ratios exemplified for the free
drugsare typically translated directly to the nanocarriers, without con-
sidering the possibility that these ratios may no longer be optimal™ ',
Moreover, it remains unknown whether multidrug nanocarriers have
fundamental advantages over mixtures of single-drug nanocarriers.

Here we introduce a polymer-based nanocarrier design that
allows us to address these questionsin the context of the second-most
common haematologic malignancy in the United States—multiple
myeloma (MM)—which remains incurable in most patients®. Our
approach leverages ‘bottlebrush prodrugs’ (BPDs) comprising
the clinically relevant three-drug combination of a proteasome
inhibitor (PI) bortezomib (Btz), an immunomodulatory drug poma-
lidomide (Pom) and a corticosteroid dexamethasone (Dex). This
drug combination is able to overcome resistance to the front line
and standard-of-care regimen of lenalidomide (Len)/Btz/Dex as
Pom allows for higher target-binding affinity compared with Len
(refs. 22-25). In spite of the empirical derivation of this combina-
tion in the clinic, it offers prolonged progression-free survival
in Len-refractory patients (17.8 versus 9.5 months) as well as in
non-Len-refractory patients (22.0 versus 12.0 months); moreover,
itimproves the overall survival rates in both settings (85.90% versus
50.80% and 95.37% versus 60.00%, re:gpectively)“. Nevertheless, the
combinationsuffers fromsignificant drawbacks that primarily arise
from off-tissue toxicities, poor stability and the development of Btz
(ref. 27). Although several examples of nanoparticle Btz formulations
have been reported as monotherapies®* ™2, so far they have shown
only minor improvements over free Btz in terms of efficacy®***. By
contrast, combination nanomedicines for MM are exceptionallyrare,
and nanocarriers incorporating the clinical combination of Btz, Pom
and Dex have not been reported®>°, Moreover, no examples of more
than two drug combination therapies with systematically optimized
synergistic ratios have been demonstrated in any disease context.
Here we show that (1) synergies between free drugsidentified in vitro
do not necessarily translate to BPDs and (2) BPDs bearing a statisti-
cal mixture of drugs in a synergistic ratio are more effective than a
mixture of three different physically equivalent single-drug BPDs
administered at the same ratio. The latter finding is mathematically
explained using a Monte Carlo simulation approach.

BPD design and synthesis

Our BPD manufacturing involves the synthesis of macromonomer prod-
rugs of Btz, Pom and Dex. For Btz, racemic1,2-tertiary diol azide linker
1wassynthesized fromtetraethylene glycol and 2,3-dimethyl-2-butene
(Supplementary Information provides the complete synthesis details).
Azido-boronic ester Btz-N; was formed from 1and Btz in 70% yield
and was subsequently coupled to alkyne 2 through copper-catalysed
alkyne-azide cycloaddition click chemistry, affording Btz-M (Fig. 1a)*°.
FoIIowing:a similar workflow but with different linkers tailored to the
inherent functionality of each API, Pom-M and Dex-M were prepared
(Fig.1a). The structures of each macromonomer and its precursors were
characterized by 'H and *C nuclear magnetic resonance spectroscopy
and by either high-resolution mass spectrometry or matrix-assisted
laser desorption ionization time-of-flight mass spectrometry where
appropriate (Supplementary Figs.1-17).

Btz-M, Pom-M and Dex-M were polymerized by ring-opening
metathesis polymerization to afford single-drug BPDs of Btz-BPD,
Pom-BPD and Dex-BPD, respectively, with number-average degrees
of polymerization of 10 (Fig. 1a). Multidrug BPDs with varying ratios
of Btz:Pom:Dex were synthesized by the copolymerization of these
macromonomers in various feed ratios (Supplementary Figs. 18-20
and Supplementary Table 1). A drug-free control polymer (BBP) was
synthesized for comparison®. Forinvivo studies, acyanine5.5 (Cy5.5)
dye was incorporated into each BPD (ref. 42). Gel permeation chro-
matography (Fig. 1b) and dynamic light scattering (Fig. 1c) revealed
efficient macromonomer-to-BPD conversions and hydrodynamic
diameters (D,) of ~-10-15 nm, respectively. All the samples, regardless
of payload compositions (that is, monodrug, multidrug or no drug),
displayed consistent sizes (Supplementary Table 1). Cryogenic elec-
tron microscopy revealed ellipsoidal structures with dimensions of
~10 nm and average aspect ratios of 1.1 (Supplementary Table 1 and
Supplementary Fig. 21). The release of Btz from Btz-BPD in pH 7.4
phosphate-buffered saline (PBS) was much slower (Supplementary
Fig. 22) than Btz-M (Supplementary Fig. 17), suggesting that the BPD
architecture stabilizes the boronic ester linker from rapid hydrolysis.
Nevertheless, exposure to glucose and adenosine triphosphate as well
asacidic buffer—established triggers for boronic ester cleavageinthe
tumour microenvironment* *—led to significantly enhanced Btz
release (for example,25.9 £2.2%in1hatpH4.0 or34.6 +2.5% in1hat
100 mM glucose; Supplementary Fig. 23). We note that alkyl boronic
estersare typically unstablein water at neutral pH; the placement of a
boronicester alongthe relatively hydrophobic BPD backbone shields
it fromimmediate hydrolysis*~.

Invitro and invivo characterization of
single-drug BPDs
The potency of each single-drug BPD was examined in vitro, using cell
viability assays (Cell TiterGlo, Promega) performed after 48 hincuba-
tion and with two different MM cell lines (MM.1S and KMS11). In all the
cases, the BPDs exhibited half-maximaliinhibitory concentrations (ICs,)
comparable to their free-drug counterparts. For instance, in MM.1S
cells, Btz-BPD wasslightly less potent than free Btz (IC5, =13.1+ 0.9 nM
versus 2.8 + 0.4 nM, respectively; Fig. 1d,e), which could be attribut-
able to differences in cell uptake (transmembrane diffusion versus
cellular endocytosis for free Btz and Btz-BPD, respectively) or the
slowedrelease of Btz from Btz-BPD. Dex-BPD was similarly less potent
than free Dex (IC5, = 70.9 £ 1.9 nM versus 17.0 £ 2.8 nM, respectively;
Fig.1d,e). Pom-BPD displayed a similar ICy, value compared with free
Pom (ICs, =354.2 £ 4.9 nMversus 308.6 + 3.5 nM, respectively; Fig. 1d,e).
BBP was not toxic at any dose level, suggesting that the observed toxici-
ties for the BPDs are due to drug release.

AsBtz-associated toxicities remainahurdleinclinical MM therapy,
we first assessed Btz-BPD as monotherapy in vivo. Gross toxicity was
assessed in healthy BALB/c mice (n =5 animals per group) for free Btz
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Fig.1|Synthesis and characterization of BPDs. a, Chemical structures of
prodrug macromonomers used in this work. These macromonomers, or mixtures
thereof, were subjected to ROMP via exposure to Grubbs third-generation bis-
pyridyl complex to produce the corresponding BPDs. Schematic of multidrug
BPDis provided (not drawn to scale). Maroon, blue and white spheres denote
different drugs randomly arranged along the BPD backbone; green denotes
cleavable linkers that activate to release the drugs; purple denotes the BPD
backbone; blue strands denote poly(ethylene glycol) shrouds for the drugs and
backbone, providing similar physical properties for BPDs regardless of drug
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identity. b, Size exclusion chromatography traces of BPDs. The minor peak at

16 min elution time corresponds to residual macromonomers. ¢, Hydrodynamic
diameters (D,) of BPDs as determined by dynamic light scattering. The inset
shows the cryogenic electronic microscopy image of three-drug BPD Syn (scale
bar,50 nm).d,e, Free drugs (d) and one-drug BPDs (e) were evaluated in MM.1S
and KMS11 cell lines (BBP refers to a drug-free bottlebrush polymer). Cell viability
(n=3biologicallyindependent samples) was evaluated by the CellTiter Glo

assay at 48 h after incubation with varying concentrations. Data are presented as
mean + standard error of the mean (s.e.m.).

(at0.75,1.00 and 1.25 mg kg ' doses administered twice a week for four
weeks via subcutaneous (s.c.) injection) and Btz-BPD (at 5.00,10.00
and 18.75 mg kg doses administered twice a week for four weeks via
intravenous (i.v.) injection) (Fig. 2a). For Btz-BPD, the 5.00,10.00 and

18.75 mg kg groups correspond to 0.47, 0.95 and 1.78 mg kg of Btz,
respectively. The drug-free polymer was not examined here as it was
previously shown to be well tolerated at doses up to 2 g kg™ (ref. 42).
Moreover, since the administration of Btzis used in the clinicand displays
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Fig.2|Safety assessments of Btz-BPD. Healthy BALB/c mice were administered
either PBS, Btz or Btz-BPD twice a week for four weeks. a, Kaplan-Meier survival
curves for mice treated with each agent (n = 5 mice per group). b, Body weight
measurements of BALB/c mice administered Btz-BPD (i.v.) at various doses
(n=5mice per group). Data are presented as mean + s.e.m. c-e, Basic metabolic
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profiles (c), complete blood counts (d) and white blood cell differential counts
(e) for healthy BALB/c mice (n =3 mice per group) that were administered for
each treatment (twice per week for two weeks) followed by two weeks of rest (that
is, noinjection) before blood draw and analysis.

improved safety with similar efficacy compared withi.v.administration,
we useit here for the fairest possible comparison to Btz-BPD (refs. 47,48).
For Btz, the 0.75 mg kg™ dose was observed to be safe, which is consist-
ent with previous reports (Fig. 2a)*®. Higher doses induced toxicities
as reflected by decreased survival rates and dramatic losses in body
weight. By contrast, Btz-BPD was tolerated at all doses with no evidence
of mortality or substantial weight loss (Fig. 2b). Toxicology studies were
performed in BALB/c mice (twice a week over a two-week period; four
injections per mouse) using the same test compounds. Metabolic profiles
(Fig.2c), complete blood counts (Fig. 2d) and white blood cell differen-
tial counts (Fig. 2e) were obtained 13 days after the last injected dose of
either Btz (0.75 mg kg via s.c. injection) or Btz-BPD (18.75 mg kg via
i.v.injection). Animalsinthe Btz-BPD group did not display any changes

with respect to the aforementioned parameters (two-tailed Student’s
t-test; P> 0.05). The safety of Pom-BPD was evaluated by following
similar protocolsin the CRBN**"Y mouse model known to be sensitive to
immunomodulatory drugtoxicity*’ (Supplementary Figs. 24-26). We did
nottestthe MTD of Dex-BPD alone due toitslowin vitrotoxicity and the
role of Dex as amitigator of toxicity in clinical therapy.

Next, the accumulation of Btz-BPD in s.c. MM tumours (KMS11)
was next evaluated. Fluorescence microscopy revealed significant
intratumoural accumulation within 1 h of administration (Fig. 3a).
Additional s.c. KMS11 tumour-bearing mice (n =5 per group) were
treated with either PBS, Btz (0.75 mg kg via s.c. injection), Btz-BPD
atamass-equivalent dose of Btz (0.75 mg kg via i.v. injection, or ‘low
dose’) or Btz-BPD at its highest-tested dose level (18.75 mg kg™ via
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Fig. 3| Btz-BPD provides significant therapeutic enhancements over Btz
ins.c.and aggressive orthotopic models of MM. a, Evaluation of tumour,
accumulation and penetration of Cy5.5-labelled Btz-BPD at 1 h post-
administration (i.v.) as assessed by fluorescence microscopy of the harvested
tumour on animal euthanasia (scale bar, 200 pm); the representative micrograph
isshown, and similar results were acquired in three independent biological
samples. For efficacy evaluation, KMS11 tumour-bearing mice were injected

with PBS, Btz or Btz-BPD (s.c.), starting when their tumours reached 5 mmin
thelargest axis. b,c, Spider plots of tumour growth (b) and average tumour size
(¢s.e.m.) (c) over the course of the study (n =5 mice per group). A statistical
analysis was performed by using a two-tailed ¢-test between the Btz and Btz-BPD
groups. P=0.0025, Btz-BPD (18.75 mg kg ™) versus Btz (0.75 mg kg™); P= 0.0325,
Btz-BPD (0.75 mg kg ™) versus Btz (0.75 mg kg ™). d, Kaplan-Meier survival curves,
revealing significant enhancements in therapeutic outcomes for animals treated
with Btz-BPD versus Btz at equivalent doses and with further improvements

Days

based onincreased Btz-BPD dose level. The arrow indicates the last administered
dose. Astatistical analysis was performed by using alog-rank test, P < 0.0002.

€, Bioluminescence imaging of MM.1S, ¢, /e Cells after i.v. dissemination and as
afunction of the time (day O versus day 20) after administration of PBS (control),
Btz (0.75 mg kg™) or Btz-BPD (18.75 mg kg ™). f,g, Individual spider plots (f) and
average tumour size (£s.e.m.) (g) over the course of the study (n =5 mice per
group). A statistical analysis was performed by using a two-tailed ¢-test between
the Btz-BPD and Btz groups. P= 0.0002, Btz-BPD (18.75 mg kg ) versus Btz-
BPD (0.75 mg kg™); P=0.0525, Btz-BPD (0.75 mg kg ™) versus Btz (0.75 mg kg ™).
h, Kaplan-Meier survival curves confirm significant enhancements in the
therapeutic outcomes for animals treated at a high dose of Btz-BPD (18.75 mg kg~
") compared with those treated at the MTD of Btz (0.75 mg kg ™). The arrow
indicates the last administered dose. A statistical analysis was performed by using
alog-rank test, P=0.0002. For statistical tests, ns denotes non-significant; *,
P<0.05;**,P<0.0L** P<0.001.

i.v. injection, or ‘high dose’). We note that low dose corresponds to
0.071 mg kg of Btz—more than tenfold lower that the free-drug dose.
Groups of mice were treated twice a week for four weeks (Fig. 2a,b);

tumour volumes and body weights were monitored. The study end-
point was reached when a tumour measured >2 cmin the longest axis
or the animal experienced >20% body weight loss.
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Fig.4|Three-drug BPD Cl studies. a, Cl maps obtained by using the Chou-
Talalay method with a fixed dose of Dex (2 nM) and by varying the concentrations
of Btzand Pom used in the free-drug combinations (top); a fixed dose of Dex-BPD
(20 nM) and varying doses of Btz-BPD and Pom-BPD were employed for BPD
combinations (bottom) after 48 h of treatment. b, Ratio validation using viability
assays of three-drug BPDs at Syn and Ant were performed in four MM cell lines
(KMS11, MM.1S, U266 and KMS18), confirming that the selected ratios were
synergistic and antagonistic, respectively, compared with the corresponding
Bliss model (for additive drug activity).

Btz displayed modest activity in this aggressive MM model com-
pared with the control (a mean survival time of 42 + 6 days versus
22 + 5 daysfor the control group) (Fig. 3b—d). Btz-BPD outperformed
free Btzatalow dose (for example, ameansurvival time of 61 + 9 days
versus 42 + 6 days). Moreover, high dose further prolonged survival (a
meansurvival time of 84 + 13 days, P < 0.0002, compared with Btzand
other groups). The enhanced activity of Btz-BPD is attributable to its
tumour accumulation and Btz release (Fig. 3a)***.

Next, we evaluated Btz-BPD in a more challenging, ortho-
topic model of MM, which primarily develops in the bone mar-
row compartment. Tumours were induced via the i.v. injection of
luciferase-expressing MM.1S, .. cre+ CellS; tumour progression was
quantified by bioluminescence imaging (Fig. 3e). Mice were removed
from the study when they exhibited hind limb paralysis or aloss of >20%
body weight. Mice (n = 5 per group) were treated with the same doses
described above at four different time points (for example, day1, 5, 8
and 12 after tumour cellinoculation). Statistically insignificant efficacy
(P=0.0525) was not observed for Btzand Btz-BPD when administered
atthelow dose (Fig. 3e-g). On the other hand, the high dose of Btz-BPD
offered significantimprovements intumour growthinhibition and sur-
vival (withamean duration of 108 + 11 days compared with 24 + 4 days
for the control group, for instance, P= 0.0002). Complete:responses
were observedin40% of the animals (2 out of 5), whereas no complete
responses were seen for either free Btz or PBS (Fig. 3f). Thus, Btz-BPD is
more effective as asingle-agent Pltherapy than Btz. Lastly, we note that
Pom-BPD gave similar trends asmonotherapy (Supplementary Fig.27).

The serum distribution and Pl activity of Btz and Btz-BPD were
assessed to explain their differences in efficacy and MTD. Proteas-
omes are present in micromolar concentrations in red blood cells
(RBCs); the binding of Pls to RBC proteasomes limits bioavailability
and contributes to haematologic toxicity’*’. Stable boronic ester prod-
rugs may overcome this limitation. To test this hypothesis, Btz-BPD
was incubated in human blood for various times. The plasma and cell
fractions were separated, and the amount of Btz-BPD in each frac-
tion was quantified (Supplementary Table 2). The concentration of
Btz-BPDin plasmawas 7-fold to 10-fold greater thanin RBCs at all time
points, which represents a>100-fold reversal compared with free Btz,
asreported previously*®”'. Next, the Pl activity was assessed. The ICs,
values (concentrations of Plat which the proteasomeis 50% active) for
Btz and Btz-BPD were 11.83 and 80.50 nM, respectively (Supplemen-
tary Fig. 28). Thus, even when directly exposed to its target, Btz-BPD
isrelatively stable, whichwould shiftits exposure away from RBCs and
thereby improve bioavailability in vivo.

Invitro characterization of combination
nanomedicines
Next, weinvestigated the potential synergies among Btz, Pom and Dex
asfree drugs and Btz-BPD, Pom-BPD and Dex-BPD as single-drug BPDs
invitrousingafull-factorial design approachin MM.1S and KMSI11 cell
lines (Supplementary Fig. 29). Synergistic, additive or antagonistic
relationships were determined using the Chou-Talalay method (Sup-
plementary Figs. 29 and 30). Notably, free drugs and BPDs displayed
distinct combination indexes (Cls) (Supplementary Fig. 30), suggesting
that the direct translation of free-drug ratios to nanocarriers would
be detrimental in this system. Additionally, the addition of Dex gives
improvements in the efficacies of both Btzand Pom, and cell death is
mostly driven by the concentration of Btz (Supplementary Fig. 30).
Clmaps of the three free drugs and of the three single-agent BPDs
were generated using the Loewe additivity method (Fig. 4a), holding
the concentration of Dex constant (2 nM for free drugs and 20 nM for
Dex-BPD). Leveraging the Bliss independence model that predicts the
toxicity of additive drug combinations, we identified a Btz:Pom:Dex
ratio of 0.20:9.46:0.34 as synergistic (it is more toxic than the Bliss
model prediction) and aratio 0f 0.02:9.98:0.01 as antagonistic (asitis
less toxic than the Bliss model prediction) for single-drug BPDs. Two
new three-drug BPDs, namely, Syn and Ant, were synthesized bearing
these average synergistic and antagonistic drug ratios, respectively, by
the copolymerization of Btz-MM, Pom-MM and Dex-MM (Fig.1a-d and
Supplementary Table1). Synand Ant were incubated with four different
MM celllines (MM.1S, KMSI11, U266 and KMS18); Syn exhibited greater
toxicity and Ant showed lower toxicity than the Bliss model prediction
(Fig. 4b), which confirms the synergistic and antagonistic nature of
these three-drug BPDs, respectively.
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Fig. 5| Improved therapeutic efficacy of synergistic three-rug BPD in MM
mouse models (n = 5mice per treatment group). a, Tumour fold change

based onthe delivery methods for the synergistic drug ratio in s.c. KMS11 mouse
model. FD, free-drug combination; 1D-BPD, mixture of one-drug-loaded BPDs
(synergistic ratio); Syn, ,, low-dose Syn (synergistic ratio, three-drug BPD).

Data are presented as mean + s.e.m. Statistical analysis was performed by using
atwo-tailed t-test to compare the different groups at fixed time points for

the tumour fold changes. 1D-BPD versus FD, P= 0.045; 1D-BPD versus Syn,,,
P=0.007.b, Tumour fold change comparing the therapeutic outcomesin the
context of synergistic and antagonistic drug delivery profiles with three-drug
BPDins.c. KMS11 mouse model. Ant, antagonistic ratio; Syn,,, low-dose Syn
(synergistic ratio); Syny,p, high-dose Syn (synergistic ratio). Data are presented
asmean +s.e.m. A statistical analysis was performed by using a two-tailed ¢-test
to compare the different groups at fixed time points for the tumour fold changes.
Antversus Syn,p, P=0.0075; Syn,, versus Syn,;,, P= 0.045. c,d, Associated
Kaplan-Meier curves comparing the therapeutic outcomes based on the delivery
methods for the synergistic drug ratio in s.c. KMS11 mouse model (c) and the
synergistic and antagonistic drug delivery profiles with three-drug BPD (d).

Statistical analysis was performed by using alog-rank test, with P= 0.045 (c) and
P=0.0325(d). e, Bioluminescence imaging of orthotopic MM.1S mouse models
atday O and day 20 during treatment. f,g, Kaplan-Meier curves comparing the
therapeutic outcomes based on the delivery methods for the synergistic drug
ratio in orthotopic MM.1S;,"/LUC" mouse model (f) and the synergistic and
antagonistic drug delivery profiles with three-drug BPD (g). A statistical analysis
was performed by using alog-rank test, with P=0.0025 (f) and P= 0.025 (g). For
statistical tests, ns denotes non-significant; *, P < 0.05; **, P< 0.01; ***, P < 0.001.
The arrow indicates the last administered dose. We note that panels a-d and
panels fand g display different study groups within the same experiment and
sharing the same controls and Syn,,, group, and these panels have been separated
for visualization purposes to support the comparisons at hand. The mean
survival times were as follows: FD (47 + 6 days for KMS11 model and 41 + 9 days for
MM.1S model), 1D-BPD (53 + 4 days for KMS11 model and 48 + 4 days for MM.1S
model), Syn,,, (61 + 9 days for KMS11 model and 53 + 14 days for MM.1S model),
Syn,,, (unavailable for KMS11 model as >50% of the mice survived until the end

of the study and 62 + 8 days for MM.1S model), Ant (52 + 6 days for KMS11 model
and 46 + 5 days for MM.1S model).

Invivo evaluation combination nanomedicines

We propose that three-drug BPDs should outperform mixtures of
single-drug BPDs at the same synergistic ratio in vivo. To rationalize
this proposal, the variance from the target drug ratio as a function
of the number of BPD molecules for three-drug BPDs (assuming ran-
dom copolymerization) and mixtures of one-drug BPDs was modelled
(Supplementary Fig. 31). For small BPD sample sizes (<10,000 BPD
molecules), the statistical mixture is more likely to reflect the target
ratio. For example, if one randomly selects 1,000 BPD molecules, the
sample willbe ~-80% reflective of the target ratio for the three-drug BPD
and only ~20% reflective of the target ratio for the one-drug BPD mix-
ture (Supplementary Fig. 31). Other reports have suggested that cells
take up ~10% nanoparticles per vesicle regardless of the nanoparticle
dose’>**, which could amplify this effect.

Using the same MM models as above (n=5), Syn was adminis-
tered at two doses: 5.30 mg kg* (Syn,,, 0.01 mg kg Btz, 0.38 mg kg*
Pom, 0.02 mg kg™ Dex) and 25.00 mg kg™ (Syn,p, 0.05 mg kg™
Btz, 1.64 mg kg™ Pom, 0.08 mg kg™ Dex); Ant was administered at
50.00 mg kg™ (0.01 mg kg * Btz, 3.48 mg kg Pom and 0.01 mg kg
Dex); a mixture of single-drug BPDs (1D-BPD) was administered
at 5.30 mg kg™ (0.10 mg kg™ Btz-BPD, 5.00 mg kg™' Pom-BPD and
0.20 mg kg Dex-BPD), corresponding to the same dose as Syn,,
Free drug (FD) was administered in a total mass that matched the
mass of Syn,, (0.1 mg kg™ Btz, 5.0 mg kg™ Pom and 0.2 mg kg’ Dex)
(Fig. 5). Lower doses of Pl were used for these combination therapy
studies compared with the monotherapy studies above to more easily
differentiate between the study groups. Bioluminescence imaging for

the MM.1S model was done on day O (study initiation) and day 20—a
known cutoff date for control mice in this model®.

In support of our modelling, Syn,, outperformed 1D-BPD and
FD (Fig. 5) in slowing tumour progression (Fig. 5a,e) and increasing
survival (Fig. 5¢,f). Moreover, Syny, provided further enhancements
inefficacy compared with Syn,, (Fig. 5a), and still using less drug than
FD.Onthe other hand, Ant displayed inferior efficacy compared with
Syn,;, despite having the same Btz dose and a tenfold higher dose of
Pom (Fig. 5d,g), suggesting that the synergistic ratio is preferred over
a‘more is better’ approach®®. Interestingly, Ant outperformed FD
despite having a smaller amount of drug, which may be due to the
improved delivery of drugs to tumour cells via the BPD.

Conclusions

We introduce a nanomedicine strategy that offers a promising new
Pl-based treatment for MM and potentially other cancers, as well as the
rapid translation of three-drug synergies determined bothin vitro and
in vivo®®. First, PI-based monotherapy (Btz-BPD) is introduced that
offers significantly improved efficacy compared with the standard
PIBtz and displaying no detectable toxicities in two in vivo models of
MM. Then, by manufacturing single-drug BPDs of Btz, Pom and Dex, we
observe that BPDs display synergistic, additive or antagonistic patterns,
respectively, distinct fromtheir corresponding free-drug counterparts,
showingthat synergies should be measured inthe nanocarrier context.
Finally, three-drug BPDs are shown to outperform a mixture of three
single-drug BPDs and free drugs in vivo, which is quantitatively mod-
elled. Overall, this work offers potentially translatable therapies for MM
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and offers new mechanistic insights into optimizing and manufacturing
combination nanomedicines in other disease contexts.
Thisapproachalso raises regulatory questions that willbeimpor-
tant as the field of combination therapeutics moves forward. For
example, could nanocarriers bearing a statistical mixture of drugs
generally classify as single entities for regulatory purposes? If so,
such an approach may be advantageous compared with mixtures of
nanocarriers wherein each nanocarrier would need independent evalu-
ation. Additionally, although it was shown here that synergy identified
amongBtz, Dex and Pom holds in four different cell lines, itis uncertain
that this ratio would be optimal for all the cell lines and patients given
the heterogeneity of MM. A future clinical workflow could involve (1)
biopsy toisolate a patient’s cancer cells; (2) Clscreening to determine if
synergy is maintainedin those cells orif an alternative synergistic ratio
exists; (3) for (1), existing BPDs could be administered, and for (2), BPDs
with patient-specific ratios could be generated on demand. The latter
would be facilitated if components of BPD combination therapies,
such as prodrug macromonomers or single-drug BPDs, could undergo
translational steps as one package®**. Altogether, these questions and
directions for the field of combination nanomedicine are fascinating.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41565-022-01310-1.
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Methods

Representative procedure for combination BPD with
Pom:Btz:Dex ratio 0f 9.5:0.2:0.3 (Syn)

To avial containing a stir bar, Pom-M (34.3 mg, 8.7 umol, 9.5 eq.) was
added. To another three separate vials, a solution of Btz-M (20 mg ml™*
in tetrahydrofuran (THF)), a solution of Dex-M (20 mg ml™ in THF) and
asolution of third-generation Grubbs catalyst (G3-Cat, 0.02 M in THF)
were freshly prepared. THF (38.7 pul) was then added to the vial containing
Pom-M, followed by the addition of the Btz-M (37.9 1;11, 0.19 umol, 0.2 eq.)
and Dex-M (61.7 pl, 0.31 pmol, 0.3 eq.) solution. Tothe macromonomer
mixture, G3-Catsolution (46.1ul,0.92 pmol, 1.0 eq.) was added, afford-
ing the desired total DP of 10, a Pom:Btz:Dex ratio of 9.5:0.2:0.3 and a
total macromonomer concentration of 0.05 M. The reaction mixture was
allowed to stir for 3 h at room temperature. To quench the polymeriza-
tion, a drop of ethyl vinyl ether was then added. The reaction mixture
was transferred to 8-kDa-molecular-weight cutoff dialysis tubingin3 ml
nanopure water; the solution was then dialysed against H,0 (500 ml x3;
solventexchange every 6 h). The dialysed solution of Syn was then con-
centrated as desired via centrifugation with a filter tube. Alternatively,
Synwasalso acquired by lyophilization, or precipitationin diethyl ether.

Celllines

MM.1S (CRL-2974, ATCC) and U266 (TIB-196, ATCC) cells were obtained
from ATCC (Manassas). KMS11 (JCRB1179,JCRB) and KMS18 (CVCL-A637,
JCRB) cellswere obtained from the JCRB Cell Bank. All the cell lines were cul-
turedin Roswell Park Memorial Institute 1640 medium (Thermo Fisher Sci-
entific) supplemented with10% foetal bovine serum (VWR), 1% penicillin/
streptomycin (ThermoFisher Scientific) and 1% glutamine (Thermo Fisher
Scientific). MM.1S, . °"* cells were generated by retroviral transduction
and authenticated by short tandem repeat DNA profiling. Allthe celllines
were confirmed tobe mycoplasma free using the MycoAlert Mycoplasma
kit (Lonza). The cell lines were housed in 37 °Cincubators under 5% CO,.

Animal usage

Allthe experimentsinvolving animals were reviewed and approved by
the Dana-Farber Cancer Institute’s Committee for Animal Care. The
maximum tumour size/burden permitted by the committee was not
exceededinthese studies. For the free-drug comparison, Btzinjection
was administered vias.c.injection (asi.v. toxicity otherwise governed
this route); Dex and Pom were administered via i.v. injection. All the
BPDs were administered viai.v. injection.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All data supporting the findings of this study are available within the
Article and its Supplementary Information and can also be obtained
from the corresponding authors uponreasonable request.
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Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
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Data collection Bruker Topspin 4.0 (NMR), Agilent ChemStation Rev. B. 04 03-SP1 (87) (LC-MS), Bruker Daltonics FlexAnalysis 3.4 (MALDI-TOF-MS), Wyatt
Dynamics 7.5.0.17 (DLS), Wyatt ASTRA 6.1 (GPC), Tecan i-Control 2.0.10.0 (cell, fluorescence, and proteasome inhibition assays), Perkin Elmer
Living Image 4.5 (in vivo imaging), Gatan Microscopy Suite Digital Micrograph 2.32.888.0 (cryo-EM)

Data analysis OriginPro 8 and GraphPad Prism V.8.1.0 for data analysis and plotting; MestReNova v12.0.4 for NMR analysis; Wyatt Dynamics 7.5.0.17 for
DLS; Perkin Elmer Living Image 4.5 for in vivo imaging; MathWorks MatLab R2018b for Monte Carlo simulation; Combenefit V. 2.021 (MIT) for
drug combination analysis; msAxel 1.0.5.2 for HR-MS analysis
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Life sciences study design
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Sample size In vitro studies were done with n = 3/group, affording statistically significant means and standard deviations. In vivo toxicity evaluation for
Bortezomib was done at n = 5/group. An a priori power analysis was performed to obtain at least 80% statistical power with alpha = 0.1 to
detect differences in body weight between treatment groups and controls. A sample size of 5 mice per group was determined using a 2-sided
z-test, which will provide the stated power to detect body weight reduction of 240% compared with the control with no more than 25%
standard deviation in the control group. Basic metabolic profiles, complete blood counts, and white blood cell differential counts were done
at n = 3/group, affording statistically significant means and standard deviations. In vivo toxicity evaluation for Pomalidomide was done at n =
3/group, affording statistically significant means and standard deviations. In vivo efficacy studies were done at n = 5/group, where similar
power analysis was performed (80% statistical power, alpha = 0.1, detection of >40% tumor burden reduction, assumption of control group
standard deviation of no more than 25%).
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Data exclusions  No data was excluded from the studies presented in this work.
Replication In vitro studies were done in 3 biological replicates. All attempts at replication were successful. In vivo studies were not replicated.

Randomization Mice are randomized into study groups at the start of all studies. For in vitro studies, samples were randomly grouped for each experimental
condition.

Blinding In vitro combination studies were not blinded (cells are blinded by default), as knowledge of sample identity and concentration is required to
prepare experimental groups containing multiple drugs at varying ratios. Single-drug in vitro studies were blinded (researcher does not know
the identity of the test compound, cells are blinded by default). in vivo studies were blinded (researcher does not know the identity of study
groups, mice are blinded by default).
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
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Dual use research of concern

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) MM.1S and U266 cells were obtained from ATCC. KMS11 and KMS18 cells were obtained from the JCRB Cell Bank.
Authentication Cell lines were authenticated by short tandem repeat DNA profiling.
Mycoplasma contamination All cell lines tested negative for mycoplasma contamination.

Commonly misidentified lines No commonly misidentified cell lines were used in the study.
(See ICLAC register)




Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals BALB/c mice, C57BL/6 FLP mice with Crbnl139V expression, SCID/beige mice. All mice are female at ~6-8 weeks of age.
Wild animals No wild animals were used in the study.
Field-collected samples  No field-collected samples were used in the study.

Ethics oversight All experiments involving animals were reviewed and approved by the Dana-Farber Cancer Institute’s Committee for Animal Care.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Policy information about studies involving human research participants

Population characteristics Samples are acquired from commercial source (AllCells), and were not selected for gender, race, blood type, and BMI.
Samples come from donors that are tobacco-free, and tested negative for HIV, HBV, and HCV.

Recruitment Samples are acquired from commercial source.

Ethics oversight All experiments involving human materials were reviewed and approved by the MIT Committee on Assessment of Biological
Hazards and Embryonic Stem Cell Research Oversight.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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